Electromagnetic Fields / Fundamentals (ELE242)(CCE302) Chapter (0) - Lec (01) A bird's eye view on EM Field Assoc. Prof. Dr/ Moataz M. Elsherbini motaz.ali@feng.bu.edu.eg ## **Chapter Contents** - **0.1 Course Description** - **0.2 Course Objectives** - **0.3 Course Administration** - **0.4 Course Outline** - 0.5 Grade Distribution ## **0.1 Course Description** **ELE242 Electromagnetic Fields CCE302 Electromagnetic Fundamentals** #### **Prerequisites:** **ELE141 Principles of Electrical Engineering** **EMP202 Engineering Mathematics (4)** #### Course goals: (ELE242)(CCE302) Vector analysis, Electrostatic fields: Coulomb's law and electric field intensity, electric flux density, Gauss's law and divergence, energy and potential, conductors, dielectrics and capacitance, Poisson and Laplace equations. Steady magnetic fields: Magnetostatic fields: Biot-Savart's law, Ampere's law, curl and Stokes's theorem, magnetic flux density, magnetic forces, Lorentz force, materials and inductance. #### 0.2 Course Aims Upon a successful completion of this course, the student will be able to: - Distinguish and adequately explain principal concepts of Electrical and Magnetic Fields. - provide students with the basic knowledge and skills to know the different Vector algebra and analysis. Moreover, analysis of Coulomb's law, electric field intensity, Gauss's law and electric flux density for different electrode geometry. - identify Conductors, dielectrics and capacitance. Finally, analysis of Energy and potential, Steady magnetic fields, the Curl and Stokes's theorem. # **Learning Outcomes (LO's)** | Cogn | ognitive Domain | | | | | |--------------------|---|--|--|--|--| | LO1 | 1 Identify the different applications in which knowing the Electric Fields is necessary | | | | | | LO2 | O2 List the broad classifications of Electromagnetic Fields | | | | | | LO3 | Demonstrate Faraday's law and Ampere's law | | | | | | Psychomotor Domain | | | | | | | LO4 | Recognize the proper dielectric material | | | | | | LO5 | Show the effect of Electromagnetic shielding to block electromagnetic radiation | | | | | | Affective Domain | | | | | | | LO6 | Differentiate between Electric and Magnetic Fields | | | | | #### 0.3 Course Administration Instructors: Assoc. Prof. Dr. Moataz Elsherbini e mail: motaz.ali@feng.bu.edu.eg Office: Obour Building / Elkhalafawy Building Office Hours: Tuesday 10.30-12.00 TAs: Eng. Amr Hamed URL: https://bu.edu.eg/staff/motazali3-courses/18966 Text: William H. Hayt & John A. Buck, Engineering Electromagnetics, McGraw-Hill Education; 9th Ed., 2018 Notes: Lecture slides and Assignments are on the web. # **0.4 Course Outline** | Lec. | Items/Topics | Assignments | | | | |------|---|---|--|--|--| | 1 | Chapter 0: Introduction Course Description-Course Objectives-Course Administration-Course Outline 0.5 Grade Distribution Chapter 0: Overview on of Electromagnetic Fields Introduction to EM Waves: Waves & Types - Frequency Allocations - EM Waves- Frequency spectrum and applications- Typical EM wave System - Microwaves and antennas | <u>Lab#1</u> Lab Orientation and Identify the S/W Interface | | | | | 2 | Chapter 1. Vector analysis: Scalars and vectors— Vector algebra — Vector calculus — Vector integral theorems — Coordinate systems | Problem Set #1 Review of Electromagnetic Fields Quiz 1 (W3) Problem Set #2 Electromagnetic Plane Wave | | | | | 3-5 | Chapter 2,3. Electrostatic fields in vacuum: Coulomb's law – Electric field intensity- Electric flux density,– Gauss's law. | | | | | | 6 | Chapter 4 Energy and Potential | Propagation Quiz 3 (W7) | | | | | 7 | Midterm Exam (30) 9/11/2024 | | | | | # **0.4 Course Outline** | Lec. | Items/Topics | Assignments | | | |------|---|--|--|--| | 8 | Chapter 5: Capacitance | | | | | 9 | Chapter 6: Capacitance | Problem Set #3 | | | | 10 | Chapter 7: Steady state magnetic fields: Ampere's Law of Force – The Steady Magnetic Field – Magnetostatic fields - Biot-Savart Law | Electromagnetic Plane Wave Propagation | | | | 11 | 2 nd Midterm (20) | Quiz 4 (W10) | | | | 12 | Chapter 8: Magnetic Forces, Materials, and Inductance Magnetic Vector Potential – Gauss' Law for Magnetic Field – curl and Stokes's theorem | | | | | 13 | Chapter 8: Magnetic Forces, Materials, and Inductance Mmagnetic flux density, magnetic forces, Lorentz force, materials and inductance | Problem Set #4 Waveguides | | | | 14 | Review | Project/oral | | | | | Final Exam | | | | #### **Possible Researches** #### **Selected Tonics in EM Fields Course** - **1.**Application of EM Fields in communication systems. - **2.**Application of EM Fields in radar systems. - **3.**Application of EM Fields in remote sensing. - **4.**Application of EM Fields in medical diagnostics. - **5.**Application of EM Fields in medicine. - **6.**Application of EM Fields in agriculture. - **7.**Application of EM Fields in heating. - 8. Application of EM Fields in processing of materials. - **9.**Application of EM Fields in industry. - **10.**Application of EM Fields in power systems. # **0.6 Grade Distribution** | Evaluation | Quizzes
W 3,9 | Midterm (30)
W7 | Midterm (20)
W11 | Final Exam
W14 | Total | |------------|------------------|--------------------|---------------------|--------------------------|-------| | Marks | 10 | 30 | 20 | 40 | 100 | # Thank you for your attention Dr. Moataz Elsherbini